

Curriculum Map Further Maths

Year 1		Core		Applied	
	Big Questions	Small Questions	Big Questions	Small Questions	
Autumn 1	Complex Numbers	 Understand and use the definitions of imaginary and complex numbers. Add and subtract complex numbers. Multiply complex numbers. Understand the definition of a complex conjugate. Divide complex numbers. Solve quadratic equations that have complex roots. Solve cubic or quartic equations that have complex roots. 	Algorithms and graph theory	 Use and understand an algorithm given in words. Understand how flow charts can be used to describe algorithms. Carry out a bubble sort. Carry out a quick sort. Carry out the three bin-packing algorithms and understand their strengths and weaknesses. Determine the order of an algorithm. Know how graphs and networks can be used to create mathematical models. Be familiar with basic terminology used in graph theory. Know some special types of graph. Understand how graphs and networks can be represented using matrices. 	
	Matrices	 Understand the concept of a matrix. Define the zero and identity matrices. Add and subtract matrices. Multiply a matrix by a scalar. Multiply matrices. Calculate the determinant of a matrix. Find the inverse of a matrix. Use matrices to solve systems of equations. Interpret simultaneous equations graphically. 	Allocation (Assignmen t) problems	 Reduce cost matrices. Use the Hungarian algorithm to find a least cost allocation. Adapt the Hungarian algorithm to use a dummy. Modify the Hungarian algorithm to deal with a maximum profit allocation. Adapt the Hungarian algorithm to manage incomplete data. 	

Autumn 2	Matrices	 Understand the properties of linear transformations and represent them using matrices. Perform reflections and rotations using matrices. Carry out enlargements and stretches using matrices. Find the coordinates of invariant points and the equations of invariant lines. Carry out successive transformations using matrix products. Understand linear transformations in three dimensions. Use inverse matrices to reverse linear transformations. 	Algorithms on graphs I	 Use Kruskal's algorithm to find a minimum spanning tree. Use Prim's algorithm on a network to find a minimum spanning tree. Apply Prim's algorithm to a distance matrix. Use Dijkstra's algorithm to find the shortest path between two vertices in a network. Use Floyd's algorithm.
	Complex Numbers	 Show complex numbers on an Argand diagram. Find the modulus and argument of a complex number. Write a complex number in modulus-argument form. Represent loci on an Argand diagram. Represent regions on an Argand diagram. 	Flows in Networks	 Understand and analyse flow through a network. Find initial flows in networks. Use the labelling procedure to augment a flow to determine the maximum flow in a network. Use the maximum flow - minimum cut theorem to prove that a flow is maximal.

Spring 1	Series	• Use standard results for $\sum_{r=1}^{n} 1$ and $\sum_{r=1}^{n} r$ • Use standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ • Evaluate and simplify series of the form $\sum_{r=m}^{n} f(r)$, where f(r) could be linear, quadratic or cubic.	Algorithms on graphs II	 Use the orders of nodes to determine whether a graph is Eulerian, semi- Eulerian or neither. Use the route inspection (Chinese Postman) algorithm to find the shortest route in a network.
	Algebra and functions (Roots of polynomials)	 Derive and use the relationships between the roots of a quadratic equation. Derive and use the relationships between the roots of a cubic equation. 	Linear programmi ng	 Formulate a problem as a linear programming problem. Illustrate a two-variable linear programming problem graphically.

	 Derive and use the relationships between the roots of a quartic equation. Evaluate expressions relating to the roots of polynomial equations. Find the equation of a polynomial whose roots are a linear transformation of the roots of a given polynomial. 	 Locate the optimal point in a feasible region using the objective line (ruler) method. Use the vertex testing method to locate
Proof	 Understand the principle of proof by mathematical induction and prove results about sums of series. Prove results about divisibility using induction. Prove results about matrices using induction. 	 the optimal point. Determine solutions that need integer values.

Ν	Vectors	Understand and use the vector and	Critical Path	Model a project by an activity network
Spring		 Cartesian forms of the equation of a straight line in three dimensions. Understand and use the vector and Cartesian forms of the equation of a plane. 	Analysis	 using a precedence table. Use dummy activities. Identify and calculate early and late event times in activity networks. Identify critical activities.

		 Calculate the scalar product for two 3D vectors. Calculate the angle between two vectors, two lines, a line and a plane, or two planes. Understand and use the scalar product form of the equation of a plane. Determine whether two lines meet and determine the point of intersection. Calculate the perpendicular distance 	Game Theory	 Calculate the total float of an activity. Calculate and use Gantt (cascade) charts. Understand two-person games and the pay-off matrix. Determine play-safe strategies and stable solutions (saddle points). Determine the optimal mixed strategy for a game with no stable solution, for the player with two choices in a 2 x 3, 3
		between: two lines, a point and a line, or a point and a plane.		x 2, 2 x 4 or 4 x 2 game.
1 Sum	Calculus (Volumes of revolution)	 Find the volume of revolution when a curve is rotated about the x-axis. Find the volume of revolution when a curve is rotated about the y-axis. 	Recurrence Relations	 Use recurrence relations to describe sequences and model situations. Find solutions to first order recurrence relations.
		 Express a complex number in exponential form. Multiply and divide complex numbers in 	Algorithms and graph theory.	 Use the planarity algorithm to determine whether or not a given graph is planar.
Summer 2	Complex Numbers	 exponential form. Understand de Moivre's theorem. Use de Moivre's theorem to derive trigonometric identities. Use de Moivre's theorem to find sums of series. Know how to solve completely equations of the form zⁿ - a - ib = 0, giving special attention to cases where a = 1 and b = 0 Use complex roots of unity to solve geometric problems. 	Transportati on problems	 Describe and model transportation problems. Use the north-west corner method. Understand unbalanced transportation problems and degenerate solutions. Use shadow costs to find improvement indices. Use the stepping-stone method. Formulate a transportation problem as a linear programming problem.

Year 2		Core		Applied	
	Big Questions	Small Questions	Big Questions	Small Questions	
mn 1	Hyperbolic functions	 Understand the definitions of hyperbolic functions. Sketch the graphs of hyperbolic functions. Understand and use the inverse hyperbolic functions. Prove identities and solve equations using hyperbolic functions. Differentiate and integrate hyperbolic functions. 	Algorithms on graphs II	 Use the route inspection algorithm in networks with more than four odd nodes. Explain the differences between the classical and practical problems. Use a minimum spanning tree method to find an upper bound. Use a minimum spanning tree method to find a lower bound. Use the nearest neighbour algorithm to find an upper bound. 	
Autum	Polar Convert bet coordinates	Convert between polar and Cartesian	Allocation (Assignmen t) problems	 Formulate allocation problems as linear programming problems. Analyse flows through a network that 	
		• Sketch curves with r given a s a function	Flows in Networks	 includes lower capacities. Solve problems involving multiple sources and sinks. Adapt solutions to deal with nodes of restricted capacity. 	

Polar coordinates	 Find the area enclosed by a polar curve. Find tangents parallel to, or at right angles to, the initial line. 	Linear programmi ng	 Understand and use slack and surplus variables. Solve maximising and minimising linear
Series	 Understand and use the method of differences to sum finite series. Find and use higher derivatives of functions. Know how to express functions as an infinite series in ascending powers using Maclaurin series expansion. 		 programming problems using simplex tableaux. Use the simplex tableau method to solve linear programming problems requiring integer solutions. Understand and use the two-stage simplex method for maximising and

Be able to find the series expansions of compound functions.	minimising problems which may include ≪ and ≫ constraints. • Understand and use the Big-M method
--	--

	Further calculus	 Evaluate improper integrals. Understand and evaluate the mean value of a function. Integrate rational functions using 	Dynamic Programmi ng	Programmi • Use dynamic programming to solve
Spi		trigonometric substitutions.Integrate using partial fractions.	Decision Analysis	 Use, construct and interpret decision trees. Calculate expected monetary values (EMVs). Use utility to compare different courses of action.

Spring 2	Further volumes of revolution	 Find volumes of revolution around the x-axis. Find volumes of revolution around the y-axis. Find volumes of revolution for curves defined parametrically. Model real-life applications of volumes of revolution. 	Critical Path Analysis	 Construct resource histograms. Construct scheduling diagrams.
	Methods in differential equations	 Solve first-order differential equations using an integrating factor. Solve second-order homogeneous differential equations using the auxiliary 	Game Theory	 Reduce a pay-off matrix using dominance arguments. Convert games into linear programming problems.

	 equation. Solve second-order non-homogeneous differential equations using the complimentary function and the particular integral. Find particular solutions to differential equations using given boundary conditions. 	
--	--	--

Sumr	Modelling with differential equations	 Model real-life situations with first-order differential equations. Use differential equations to model simple harmonic motion. 	Recurrence relations	 Find solutions to second order recurrence relations.
------	--	--	-------------------------	--