Yea r 1		Core	Applied		
	Big Questions	Small Questions	Big Questions	Small Questions	
Autumn 1	Algebra and Functions (Part 1) [chapter 1 &3]	 Multiply and divide integer powers Expand a single term over brackets and collect like terms Expand the product of two or three expressions Factorise linear, quadratics and simple cubic expressions Know and use the laws of indices Simplify and use the rules of surds Rationalise denominators Solve linear simultaneous equations using elimination or substitution Solve simultaneous equations: one linear and one quadratic Interpret algebraic solutions of equation graphically Solve linear inequalities Solve quadratic inequalities Interpret inequalities graphically Represent linear and quadratic inequalities graphically 	Statistical Sampling [chapter 1] Data Presentatio n and	 Understand 'population', 'sample', and 'census' and comment on the advantages and disadvantages of each Understand the advantages and disadvantages of simple random sampling, systematic sampling, stratified sampling, quota sampling and opportunity sampling Define qualitative, quantitative, discrete and continuous data and understand grouped data Understand the large data set and how to collect data from it, identify types of data and calculate simple statistics Calculate measures of central tendency such as the mean, median and mode Calculate measures of spread such as range, interquartile range and interpercentile range 	
			Interpretati on (part 1) [chapter 2&3]	 Calculate the variance and standard deviation Understand and use coding Identify outliers in data sets Draw and interpret box plots Draw and interpret cumulative frequency diagrams Draw and interpret histograms Compare two data sets 	
	Further Algebra [chapter 2 &4]	 Solve quadratic equations using factorisation, the quadratics formula and completing the square Read and use f(x) notation when working with functions Sketch the graph and find the turning point of a quadratic function Find and interpret the discriminant of a quadratic expression Use and apply models that involve quadratic functions Sketch cubic graphs Sketch quartic graphs 	Quantities and units in Mechanics [Chapter 8]	 Understand how the concept of a mathematical model applies to mechanics Understand and be able to apply some of the common assumptions used in mechanical models Know SI units for quantities and derived quantities used in mechanics Know the difference between scalar and vector quantities 	

• Sketch reciprocal graphs of the form $y = \frac{a}{x}$ and
$y = \frac{a}{x^2}$
 Use intersection points of graphs to solve equations Translate graphs
Translate graphs Stretch graphs Transform graphs of unfamiliar functions

	• Find the derivative, $f'(x)$ or $\frac{dy}{dx}$, of a simple function• Use the derivative to solve problems involving gradients, tangents and normal• Identify increasing and decreasing functions• Find the second order derivative, $f''(x)$ or[ch 12] $\frac{d^2 y}{dx^2}$, of a simple function• Find stationary points of functions and determine their nature• Sketch the gradient function of a given function• Model real-life situation with differentiation	 Use the derivative to solve problems involving gradients, tangents and normal 	Probability [Chapter 5]	 Calculate probabilities for single events Draw and interpret Venn diagrams Understand mutually exclusive and independent events, and determine whether two events are independent Use and understand tree diagrams
Autumn 2		Statistical Distributio ns	 Understand and use simple discrete probability distributions including the discrete uniform distribution Understand the binomial distribution as a model and comment on appropriateness Calculate individual probabilities for the binomial distribution Calculate cumulative probabilities for the binomial distribution 	
	Integration [ch 13]	 Find y given dy/dx for xⁿ Integrate polynomials Find f(x), given f'(x) and a point on the curve Evaluate a definite integral Find the area bounded by a curve and the x-axis Find areas bounded by curves and straight lines 	Kinematics 1 [Chapter 9]	 Understand and interpret displacement-time graphs Understand and interpret velocity-time graphs Derive the constant acceleration formulae and use them to solve problems Use the constant acceleration formulae to solve problems involving vertical motion under gravity

rstand vector magnitude and use vectors in d and distance calculations vectors to solve problems in context		 the binomial distribution and interpret the results Carry out a two-tailed test for the proportion of the binomial distribution and interpret the results
Ilate the gradient of a line joining a pair of s rstand the link between the equation of a and its gradient and intercept the equation of a line given (i) the gradient one point on the line or (ii) two points on the	Forces and Newton's Laws [Chapter 10]	 Draw force diagrams and calculate resultant forces Understand and use Newton's first law Calculate resultant forces by adding vectors Understanding and use Newton's second law, F = ma Apply Newton's second law to vector forces
s a tl	s rstand the link between the equation of a and its gradient and intercept he equation of a line given (i) the gradient	Newton's rstand the link between the equation of a and its gradient and intercept he equation of a line given (i) the gradient ne point on the line or (ii) two points on the 10]

Trigonometr y [ch 9]	 lines Know and use the rules for parallel and perpendicular gradients Solve length and area problems on coordinate grids Use straight line graphs to construct mathematical models Find the mid-point of a line segment Find the equation of the perpendicular bisector to a line segment Know how to find the equation of a circle Solve geometric problems involving straight lines and circles Use circle properties to solve problems on coordinate grids Find the angle in a semicircle and solve other problems involving circles and triangles Use the cosine rule to find a missing side or angle Find the area of triangle using an appropriate formula Solve problems involving triangles Sketch the graphs of the sine, cosine and tangent functions Sketch simple transformations of these graphs 		and acceleration • Understand and use Newton's third law • Solve problems involving connected particles
----------------------------	---	--	---

7	Trigonometr	 Calculate the sine, cosine and tangent of any 	Data	Draw and interpret scatter diagrams for the
ing	У	 angle Know the exact trigonometric ratios for 30°, 45° 	Presentatio n and	bivariate dataInterpret correlation and understand that it
Spr	[ch 10]	and 60° • Know and use the relationships $tan\theta = \frac{sin\theta}{s}$ and	Interpretati on (part 2)	does not imply causationUnderstand when you can use a regression line
0)		• Know and use the relationships $tan\theta = \frac{tan\theta}{cos\theta}$ and		to make predictions
		$\sin^2\theta + \cos^2\theta \equiv 1$	[Chapter 4]	

	 Solve simple trigonometric equations of the forms sinθ=k, cosθ=k and tanθ=k Solve more complicated trigonometric equations of the forms sin nθ=k and sin (θ±α)=k and equivalent equations involving cos and tan Solve trigonometric equations that produce quadratics 		
Algebra and Functions (part 2) [ch 7 & 8]	 Cancel factors in algebraic fractions Divide a polynomial by a linear expression Use the factor theorem to factorise a cubic expression Construct mathematical proofs using algebra Use proof by exhaustion and disproof by counter-example Use Pascal's triangle to identify binomial coefficients and use them to expand simple binomial expressions Use combinations and factorial notation Use the binomial expansion to expand brackets Find individual coefficients in a binomial expansion Make approximations using the binomial expansion 	Kinematics 2 [Chapter 11]	 Understand that displacement, velocity and acceleration may be given as functions of time Use differentiation to solve kinematics problems Use calculus to solve problems involving maxima and minima Use integration to solve kinematics problems Use calculus to derive constant acceleration formulae

Exponential and Logarithms	 Sketch graphs of the form y=a^x, y=e^x, and transformations of these graphs Differentiate e^{kx} and understand why this result 	Normal Distributio n	 Understand the normal distribution and the characteristics of a normal distribution Find the percentage points on a standard normal curve
----------------------------------	--	----------------------------	--

Ν	Algebraic	Multiply and divide two or more algebraic fractions	Forces at	•	Resolve forces into components
Ľ	and Partial	 Add or subtract two or more algebraic fractions 	any angle	•	Use the triangle law to find a resultant force
JMe	Fractions	 Convert an expression with linear factors in the denominator into partial fractions 	(part 1)		Solve problems involving smooth or rough inclined planes
Sun	[ch 1.2, 1.3, 1.4, 1.5]	• Convert an expression with repeated linear factors in the denominator into partial fractions	[Chapter 5]		Understand friction and the coefficient of friction
•7		 Divide algebraic expressions 		•	Use $F \leq \mu R$

	 Convert an improper fraction into partial fraction form
Trigonometr y (Part 1) [ch 5 & 6]	 Convert between degrees and radians and apply this to trigonometric graphs and their transformations Know exact values of angles measured in radians Find an arc length using radians Find areas of sectors and segments using radians Solve trigonometric equations in radians Use approximate trigonometric values when θ is small Understand the definitions of secant, cosecant and cotangent and their relationship to cosine, sine and tangent Understand the graphs of sec, cosec and cot and their domain and range Simplify expressions, prove simple identities and solve equations involving sec, cosec and cot Prove and use sec² x ≡ 1+tan² x and
	 cosec² x ≡ 1+cot² x Understand and use inverse trigonometric functions and their domain and ranges
Differentiati on	 Differentiate trigonometric functions Differentiate exponentials and logarithms Differentiate functions using the chain, product and quotient rules Differentiate parametric functions
[ch 9]	 Differentiate functions which are defined implicitly Use the second derivative to describe the behaviour of a function Solve problems involving connected rates of change and construct simple differential equations

Yea r 2		Core	Applied		
	Big Questions	Small Questions	Big Questions	Small Questions	
Autumn 1	Integration [ch 11]	 Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions of the form f(ax+b) Use trigonometric identities in integration Use the reverse of the chain rule to integrate more complex functions Integrate functions by making a substitution, using integration by parts and using partial fractions Use the trapezium rule to approximate the area under a curve Solve simple differential equations and model real-life situations with differential equations 	Application of Kinematics [Chapter 6]	 Model motion under gravity for an object projected horizontally Resolve velocity into components Solve problems involving particles projected at an angle Derive the formulae for time, range, greatest height and the equation of the path of a projectile 	

	Proof [ch 1.1]	 Use proof by contradictions to prove true statements 	Regression and correlation [Chapter 1]	 Understand exponential models in bivariate data Use a change of variable to estimate coefficients in an exponential model Understand and calculate the product moment correlation coefficient Carry out a hypothesis test for zero correlation
Autumn 2	Functions and Modelling [ch 2] Series and Sequences [ch 3]	 Understand and use the modulus function Understand mappings and functions, and use domain and range Combine two or more functions to make a composite function Know how to find the inverse of a function graphically and algebraically Sketch the graphs of the modulus functions y= f(x) and y=f(x) Apply a combination of two (or more) transformations to the same curve Transform the modulus function Find the nth term of an arithmetic sequence Prove and use the formula for the sum of the first n terms of an arithmetic series Find the nth term of a geometric sequence Prove and use the formula for the sum to infinity of a convergent geometric series Use sigma notation to describe series Model real-life situations with sequences and series 	Application s of Forces [Chapter 7]	 Find an unknown when a system is in equilibrium Solve statics problems involving weight, tension and pulleys Understand and solve problems involving limiting equilibrium Solve problems involving motion on a rough or smooth inclined plane Solve problems involving connected particles that require the resolution of forces

	The Binomial Theorem [ch 4]	 Expand (1+x)ⁿ for any rational constant n and determine the range of values of x for which the expansion is valid Expand (a+bx)ⁿ for any rational constant n and determine the range of values of x for which the expansion is valid 	Probability [Chapter 2]	 Understand set notation on in probability Understand conditional probability Solve conditional probability problems using two-way tables and Venn Diagrams Use probability formulae to solve problems Solve conditional probability using tree diagrams
Spring 1	Trigonometr y (part 2) [ch 7]	• Use partial fractions to expand fractional expressions • Prove and use the addition formulae • Understand and use the double-angle formulae • Solve trigonometric equations using the double- angle and addition formulae • Write expressions of the form $a\cos\theta \pm b\sin\theta$ in the forms $R\cos(\theta \pm \alpha)$ or $R\sin(\theta \pm \alpha)$ • Prove trigonometric identities using a variety of identities • Use trigonometric functions to model real-life situations	Further Kinematics [Chapter 8]	 Work with vectors for displacement, velocity and acceleration when using the vector equations of motion Use calculus with harder functions of time involving variable acceleration Differentiate and integrate vectors with respect to time

Spring 2	Parametric Equations [ch 8] Numerical Methods [ch 10]	 Convert parametric equations into Cartesian form by substitution Convert parametric equations into Cartesian form using trigonometric identities Understand and use parametric equations of curves and sketch parametric equations of solve coordinate geometry problems involving parametric equations Use parametric equations in modelling in a variety of contexts Locate roots of f(x)=0 by considering changes of sign Use iteration to find an approximation to the root of the equations f(x)=0 Use the Newton-Raphson procedure to find approximations to the solutions of equations of the form f(x)=0 	Moments [Chapter 4]	 Calculate the turning effect of a force applied to a rigid body Calculate the resultant moment of a set of forces acting on a rigid body Solve problems involving uniform rods in equilibrium Solve problems involving non-uniform rods Solve problems involving rods on the point of tilting 	
		 Use numerical methods to solve problems in context 			

er 1	Vectors 3D	Understand 3D Cartesian coordinates		
Summ	[ch 12]	 Use vectors in three dimensions Use vectors to solve geometric problems Model 3D motion in mechanics with vectors 		